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GRACE Mission
Principles

Focus
• "Do one thing.  Do it well."

• "Chose an objective that is worth pursuing"

Balance 
• "Technology without economics is not engineering"

Risk Containment
• "Don't stretch the limits of hardware performance"
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GRACE Mission
Balance 

• Minimizing Total Cost
• Total Cost = ∑(C1+C2+C3  . . . . . . . . . .+Ck)
• For a given level of performance, Total Cost is minimum if 

• ∂ Perf/∂C1=∂ ��Perf/∂C2=∂ Perf/∂C3…….=∂ Perf/∂Ck

• Cost functions are very non-linear and not well known
• Pushing technology is very costly
• Doing things for the first time is very costly

• Line Item Cost = (Fixed Cost) + n x (Unit Cost)
• GRACE Satellite Subcontract

• Fixed cost = $11 M
• Unit cost  =  $12 M / satellite
• Better thermal control = $0.06 M total

• Build identical units.  
• Lower total Cost and fewer spares
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GRACE Mission
Focus

Heritage Gravity Missions all carried a Magnetometer
• NASA's Gravity Research Mission (GRM) proposal - died 1985
• ESA's Aristoteles proposal - died 1990 when NASA pulled out 
• NASA-GSFC's GAMES proposal died 1994
• GFZ-Potsdam's CHAMP launched 2000

Heritage Gravity Missions Emphasized Spatial Resolution
• GRM proposed to fly at an altitude of 156 to 170 km
• Aristoteles proposed to fly at an altitude of 200 km   
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GRACE Mission
Competing Objectives

• Orbit Design
• Magnetic field missions prefer an inclination of 85 degrees
• Gravity mission prefer an inclination of:

• First choice - near 90 degrees
• Second choice - sun-synchronous orbit at 97 degrees 

• Structural Stability
• Magnetometers want to be located on a long boom 

• 1 nano-Tesla
• A satellite for a Gravity Mission needs to be very stable 

• 1 µm @ 2x per orbit, or 5E-12 m/s2  - .0002 to .04 Hz
• Root Cause of the Problem: Organizational

• Funding for gravity missions came NASA’s Geo-potential 
Fields Program Office
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GRACE Mission
The Seminal SST Gravity Mission

Milo Wolff, MIT-SAO - JGR, Vol.,74, No. 22, Oct. 1969
• Two geometrically identical satellites 
• Equipped to measure relative velocity

∆U =  Vmean orbital x ∆valong track

• 200-km separation - Altitude ≥  separation
• USO + Transponded RF signal, or Laser doppler system 

• Doppler (i.e. ∆valong track) sampled every 10 seconds

• Store and forward data to the ground

• Non-gravitational forces controlled by careful design and 
accounted for by modeling  
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GRACE Mission
GRACE - How it Works

Microwave Link
Tracking Phase - Range change
24 & 32-GHz  - Ionosphere 
Dual One-way - Clocks

GPS 
Relative Clocks
Location 

Accelerometers -
Non-Gravitational Forces

Star Cameras 
measure attitude

Mission Ops predicts the 
orbits for each GRACE

Each GRACE points at the
predicted location of the 
other GRACE
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GRACE Mission
Gravity Research Mission -1985

Star Camera
Assembly

Thruster
Assembly

Vector 
Magnetometer

Leading Satellite 
Only

Satellite-to-Satellite 
Doppler Antennas

Transmit

Receive

Thruster
Assembly

Fuel Tanks
10.8 M

4.4 M

Solar Array

Unfriendly Features
• 1200 kg of Hydrazine Fuel
• Flexible Boom & Solar Arrays
• Multipath on the SST RF link

Challenges
• No feasible operational safe mode
• Continuous Drag Compensation
• Time synchronization

Dual One-Way Ranging Concept Developed at APL!
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GRACE Mission
Orbit Life & Mission Safety
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GRACE Mission
GA�MES - 1992

Instrumentation Concept 
• SubSatellite Retro Reflectors

• Size of a Soda Can 
• Aerodynamically stabilized
• 2 units released sequentially

• Laser Ranging System 
• Pulsed at 2-GHz rate
• 100 µ/s range rate

Challenges
• Acquisition & tracking by the laser 

ranging telescope
• Sub-satellite aerodynamic stability

Unfriendly Features
• Hydrazine Propulsion System
• Flexible 6-M boom
• Flexible Solar Arrays
• Uncontrolled Non-gravitational 

forces - aerodynamic
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GRACE Mission
Competition vs. SST  (Before GRACE)
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GRACE Mission
Listen for Simple Truths

• Minimum Science Mission Objective  - A moving target
• Oceanography base 

• 1994 Geoid with 5-cm accuracy cummulative  to degree 50 
• 1996 Geoid with 0.5-cm accuracy  to degree 50

• Victor Zlotnicki casually commented "I wouldn't compromise 
the accuracy of a single low-degree term in order to improve 
the accuracy of the high-degree terms."
• Our response was to develop performance specifications for 

J2  - usually ignored by predecessors
• Labrecque pushed the idea of using gravity to measure  

time-varying geophysical parameters - Richard Gross, B. 
Chao etal., - "low-degree and order terms were significant" 

• Brooks Thomas applied signal filter theory to the problem 
and showed how to improve SST performance @ all scales
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GRACE Mission
Focus on the Long Wavelength
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GRACE Mission
Abandoned Orbit Design 

• Baseline Co-planar Orbit has one drawback
• The partial derivative of the  m=n terms of the spherical 

harmonics are ~zero for the baseline co-planar, polar, orbit

• Option for improvement
• Offset the LAN's of the twin satellites
• 40-km offset:  Marginal improvement

• Drag & control penalty similar to the baseline
• 200-km offset: Significant improvement 

• Drag penalty is high
• Exceeded out-of plane ACC performance
• The plane change would be costly 

200 km

Approaching the 
Descending Node

Leaving the
Ascending Node200 km
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GRACE Mission
Impact of the Advanced Digital Filtering 

Center of Mass Control
• ≤500 microns not good enough
• ≤100 microns needed
• Cost: $2,000,000 for on-orbit 

adjustment 
• Cost $50,000 for tank valving

Accelerometer Performance
• 10E-9 ms-2Hz-1/2 no longer good 

enough
• 10E-10 needed
• Cost: $ 0.0 (available)

Digital Filtering the data by 335 
• Incremental Cost:  Worth it!

Higher Data Rate for ACC & 
K-Band data
• Brooks wanted 50 Hz 
• Compromised at 10 Hz
• Cost: $0.0

Attitude Control Pointing
• ≤ 1 mr not good enough
• ≤  0.5 mr needed
• Cost uncertain

Control on the PSD of the 
noise from attitude control 
• 20-mN thrusters too strong
• 10-mN thrusters needed
• Cost: $ 0.0 (available)
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GRACE Mission
Limiting Error Sources

Accelerometer

USO sans GPS

USO with GPS

Microwave
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GRACE Mission
Limiting Errors Mapped to Geoid 
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The key to the 
long wavelength 
terms is the 
Accelerometer

The satellites must be mechanically quiet
• Avoid Parasitic Harmonic 

Oscillators
• No rotating machinery 
• Limit Thrusting

• Heaters mounted on Low 
conductivity material - limit 
Lenz-Law effects

• Well staked cables 
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GRACE Mission
French Electrostatic Accelerometer

70-gram Proof Mass
• 1x 4x 4-cm Titanium block
• Not caged
Electrostatic Suspension
• 10-volt bias 
• 150-micron gap
• 12-micron free motion
Performance 
• Noise 10-10 m/s2 Hz-1/2

• Full Scale 5x10-5 m/s2

Architectural Implication
• No requirement for continuous 

drag compensation!
Source: ONERA

YAW

ROLLPITCH
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GRACE Mission
Non-Gravitational Effects
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Non-Gravitational Forces
• Solar pressure       = 50E-09 m/s2
• Drag @ 500 km     =   1E-07 m/s2
• Drag @ 300 km     =   5E-06 m/s2
Parasitic Harmonic Oscillators
• @ frequency 0.1 Hz,  1-gram 

parasitic oscillator with amplitude 
of 1mm results in a satellite 
acceleration of 1E-09 m/s2

Rotating Machines
• Reaction wheel run at 600 to 

3000 rpm
• This is 10 to 50 Hz
• Interferes with ACC control loops 

they have a resonance at ~30 Hz
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GRACE Mission
Controlling Torques 

Front View

Microwave 
Horn

Side View

S-Band  Antenna Winglets

Center of Mass

Astrium, GmbH

Thrusters  
(4 places)
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GRACE Mission
K-Band Ranging

XY
Z

X Y

Z

24- and 32-GHz
Unmodulated Carrier
Frequencies separated 
by 670 kHz @ 32 GHz 

Transmit and Receive
Single Corrugated Horn
Linear Polarization
45°to Z-Axis

GRACE Satellites are twins 

Transmit

Receive
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GRACE Mission
Dual One-Way Ranging

~
Cos ω  t 2

USO-2

Mixer

~
Power Amp Antennas

LNA
Cos ω  t 1

USO-1

+

timePh
as

e
time

Ph
as

e

timePh
as

e

∂f/f = 10-13

SOURCE:  C.E. Dunn



23

GRACE Mission
The Laser Interferometer Option

Advantages
• The Transmit and Receive 

frequency are the same
• Potential to Improve 

Ranging performance for the 
longest wave length terms 

Microwave Offsets
• Lowered the offset between 

K-Band frequencies to under 
1 MHz

• Spitzmesser showed it could 
be done

Challenges in 1996
• Frequency stability 1E-12 

was not demonstrated
• SIM was working on a 

cavity stabilization 
approach objective 1E-11  

• Needed arc-second level 
pointing to make fringes
• An optical concept with 

less stringent pointing rqt 
had poor SNR  

Abandoned after a 6 week 
preliminary design effort  
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GRACE Mission
Risk Containment

Level of Integration into the I�PU
• GPS
• K-band Tone Tracking
• Timing Signals
• Star Camera Image Processing

Star Camera Configuration

Redundancy
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GRACE Mission
Level of IPU Integration

K-band Tone
Tracking

• Essential integration to achieve 100 psec time
synchronization

Timing Signals
1-Hz   OBDH

• Synchronize telemetry and command with the
instrumentation

Timing Signals
10-Hz ACC
1-MHz ACC

• Required to synchronize the10-Hz ACC data with the
10-Hz K-Band ranging data.  Simplifies the digital
filtering of the data by the Science Data System

Star Camera
Image
Processing

• Intel 486 micro-processor from DTU Ğ expected similar
problems to the 603e used in the BlackJack

• Utility of K-band data depends on star camera data
• Unit cost of Processors > $250,000 (needed at least 4)
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GRACE Mission
Star Camera Configuration

• Two Star Cameras 45 degrees to Zenith - Camera pointed 
away form the Sun is "Prime" and used by AOCS.
• Simultaneous Sun and Moon blinding in both occurs monthly
• Simply letting the satellite float with control actuators OFF 

works for 5- to 8-minute moon intrusions in the "prime 
camera"

• Every 160 days, the sun shifts from one side of the satellite to
the other.  Prime camera must be switched at this point. 

• If one camera fails, the IMU provides an inertial reference 
during those periods when the Sun interferes with the only 
camera.  

• If the both the IMU and a camera fail on one Satellite, then 
leading satellite must switch places with the trailer

• Three- & Four-camera options abandoned -
• Packaging close to the ACC was too difficult
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GRACE Mission
Cold Gas Sub-System 

Twelve  10-mN Thrusters �
Two 40-mN Thrusters 

Regulators 

Two Tanks

Solenoid 
Valve

Twin HP  
Latch Valves

LP Latch Valve

Center of Mass Stability 
• CHAMP manifolds the two tanks 

together and has one high pressure 
regulator & 2 low pressure latch 
valves

• 1°K ∆T between Tanks moves the 
CoM 80 µm

GRACE Dual-String Architecture 
• No mass exchange between tanks 

from ∆T
• Redundant regulators
• Compensates for tuck-open thruster
• X-axis CoM is controlled by single 

string operation of orbit control 
maneuvers
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